
A Procedural Approach to Authoring Solid Models

Barbara Cutler Julie Dorsey Leonard McMillan Matthias Müller Robert Jagnow

Laboratory for Computer Science
Massachusetts Institute of Technology

Abstract

We present a procedural approach to authoring layered, solid mod-
els. Using a simple scripting language, we define the internal struc-
ture of a volume from one or more input meshes. Sculpting and
simulation operators are applied within the context of the language
to shape and modify the model. Our framework treats simulation
as a modeling operator rather than simply as a tool for animation,
thereby suggesting a new paradigm for modeling as well as a new
level of abstraction for interacting with simulation environments.

Capturing real-world effects with standard modeling techniques
is extremely challenging. Our key contribution is a concise pro-
cedural approach for seamlessly building and modifying complex
solid geometry. We present an implementation of our language us-
ing a flexible tetrahedral representation. We show a variety of com-
plex objects modeled in our system using tools that interface with
finite element method and particle system simulations.

Additional Keywords: volumetric modeling, signed-distance
function, tetrahedral representation.

1 Introduction

Geometric models are a fundamental component in any graphics
system. While there has been tremendous progress in the area of
rendering over the past three decades, creating and acquiring high
fidelity geometric models remains a challenging and tedious pro-
cess.1 Models are generally designed with high-end rendering in
mind and can be difficult to modify and manipulate. Furthermore,
as animation and simulation techniques become increasingly so-
phisticated and widely available, there is an increasing demand for
models suitable for these purposes as well.

Today’s model generation tools are primitive in that they gen-
erally lack a formal specification framework. This stands in stark
contrast to commonly available rendering systems, such as Render-
Man, in which lighting, materials, objects, and even shading are
specified procedurally [Hanrahan and Lawson 1990; Upstill 1990].

In this paper, we introduce a procedural modeling approach for
authoring layered, solid models. We are especially interested in
generating models that are suitable for both rendering and physical

1The widespread use of the same small set of models, such as the Stan-
ford bunny and the Utah teapot, attests to these difficulties.

simulation. Just as computer graphics rendering systems provide a
framework for light transport simulation, we envision an analogous
framework for physical processes and other operators that modify
and shape geometry.

There are many reasons to consider a procedural approach to sur-
face creation and modification. A concise specification framework
permits different simulation techniques — for example, ray tracing,
radiosity, finite element method (FEM), and simplified spring-mass
models — to be applied and compared. In addition, complicated
processes can be described algorithmically. A procedural definition
can be used as an intermediate format for capturing, editing, and
replaying interactive editing sessions. It also provides a high-level
abstraction, permitting a variety of different representations — for
example, meshes and implicit functions — to coexist in the same
environment, regardless of the underlying simulation system. Pro-
cedural models are advantageous in that they can be incrementally
edited and refined based on artistic needs. Finally, powerful simu-
lation tools, such as FEM or particle systems, can be embedded as
modeling operators within such a procedural framework.

1.1 Related Work

Within traditional modeling systems, complex models are created
by applying a variety of operations, such as constructive solid ge-
ometry(CSG) and freeform deformations, to a vast array of geomet-
ric primitives [Coquillart 1990; Payne and Toga 1992; Wyvill et al.
1999; Adzhiev et al. 1999]. In the hands of a talented artist, these
systems produce intricate geometric models, but the process is ex-
tremely labor intensive. The range of tools available for specifying
and editing shapes is also very limited. Surface representations can
be locally deformed by simply modifying surface control points;
however, tools for shaping geometry are rarely physically based,
and the underlying geometry generally lacks information about the
internal physical properties of the model, which would be necessary
for creating complex deformations. In addition, such deformations
can create self-intersections that are difficult to detect or prevent.
Furthermore, performing topological changes to a model, such as
drilling a hole through it, can be challenging using a surface de-
scription alone.

Another approach to creating models involves interactive sculpt-
ing, in which the user modifies a solid material with a tool [Wang
and Kaufman 1995; Mizuno et al. 1998; Raviv and Elber 2000;
Frisken et al. 2000]. Such systems are typically based on sampled
volumetric representations (voxels or octrees), which can be costly
to store and render interactively. Additionally, performing deforma-
tions within a grid-based representation requires shifting data over
cell boundaries, which can be expensive and lossy. Unlike surfaces,
which are merely hollow shells, volumetric representations can cap-
ture the internal material structure of a model. One of the main
benefits of volumetric representations is that they support robust
sculpting operations and simulations [Dorsey et al. 1999; O’Brien
and Hodgins 1999]. However, volumetric models often lack visual
fidelity because a high resolution volume is necessary to represent
a complex model.

Copyright © 2002 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions Dept,
ACM Inc., fax +1 (212-869-0481 or e-mail p rmissions@acm.orge .
© 2002 ACM 1-58113-521-1/02/0007 $5.00

302

3D digitizing has emerged as a popular technique for acquiring
complex models, such as sculptures or mechanical parts, which
would be difficult or impossible to create with interactive tech-
niques. While such digitizers are useful for acquiring surface shape
and appearance properties, they do not capture the internal structure
of the geometry, which is often necessary for animation or simula-
tion.

Procedural modeling techniques have proved to be valuable in
several specific domains of computer graphics [Ebert et al. 1998].
Examples include plant modeling [Prusinkiewicz et al. 1988], solid
texturing [Perlin 1985; Perlin and Hoffert 1989], displacement
maps [Cook 1984], cellular texturing [Legakis et al. 2001], and ur-
ban modeling [Parish and Müller 2001]. One of the difficulties of
procedural modeling is that the various techniques are domain spe-
cific. Additionally it can be difficult to precisely control the gener-
ation process to create a specific model. In our approach, we use
a surface model as a starting point and use procedural techniques
to generate a solid model. This provides a framework for the cre-
ation of a rich class of models, which are suitable for rendering and
simulation.

1.2 Overview

Our procedural framework provides a controlled, systematic way
to specify the geometric and material properties of a solid model
and to vary these attributes as a function of time. We have devel-
oped a simple scripting language for authoring complex volumetric
models and we show examples of its use. In our language, models
are first initialized and then modified with a palette of physically
inspired simulation operations. Model initialization is presented in
Section 2 and the definition and use of simulation tools is described
in Section 3. In Section 4 we present an implementation of the lan-
guage using layered tetrahedral models, which we used to create
the examples discussed in Section 5.

2 Model Specification

Many real-world objects are composed of layers: architectural
framing, insulation and siding; the skeleton, muscles, and skin of an
animal; or the peel of a fruit. Building a physically-realistic model
of any of these objects requires a description of the boundaries be-
tween materials and the variations within each material. Such a
model could be created by an artist, but the process would be time-
consuming. The data could be obtained through tomography or dis-
section approaches, but this can be inaccurate or destructive. Our
modeling language is based on the observation that often the inter-
nal structure of an object can be inferred from a representation of
its primary interface. Our basic building block is the layered vol-
ume. Within our framework, volumes can be combined, and layer
composition can be controlled procedurally.

Through a series of examples based on a simple model of a
chocolate candy, we show that our language provides a natural and
expressive way to construct volumetric models. We include frag-
ments of code from the scripts used to generate the images in this
paper. As a convention in our examples, we use all capital letters to
indicate user-defined functions and materials. A simplified gram-
mar for the language appears in the appendix.

2.1 Layers of Material

To construct a volume with an interesting internal structure, we
build layers of material from the primary surface. In our first ex-
ample, we begin with a simple candy-shaped surface mesh and add
two layers of material to the exterior and one layer to the interior
(Figure 1).

Figure 1: A chocolate candy created with two layers exterior to the
original surface and one layer to fill the interior. The outermost
layer has a procedural definition to create stripes of chocolate.

STRIPED_CANDY = volume {
distance_field = surface_mesh {

file = candy.obj }
layers = {

interior_layer {
material = CHOCOLATE
thickness = fill }

exterior_layer {
material = WHITE_CHOCOLATE
thickness = 0.10 }

exterior_layer {
material = STRIPED_CHOCOLATE
thickness = 0.05 } } }

Each layer has a material type and thickness. The type and
thickness can be uniform or vary procedurally, which we discuss
later. The thickness keyword fill can be used with a well-defined
closed mesh to describe an interior layer that is thick enough to fill
the remaining interior space. The material keyword nothing can
be used to describe a layer of air with no volumetric properties.

2.2 Procedural Layer and Material Definitions

Materials are defined by a list of rendering and simulation parame-
ters. We have a small library of built-in materials; additional mate-
rials can be defined within the script file as shown below. Default
values are assigned to any unspecified parameters.

CHOCOLATE = material {
color = { 0.31 0.17 0.15 }
density = 1100 /* kg/mˆ3 */
etc. }

A layer need not be composed of a uniform material. The user
can procedurally define a continuous variation of properties, such
as wood grain or concrete particles, within a single material. This
information can be used by a simulation and during rendering. Al-
ternatively, a procedure can be used to subdivide the layer into dis-
tinct materials. Below is the specification used to create the striped
layer of chocolate on the candy.

Material* STRIPED_CHOCOLATE(Vec3f &p) {
if (p.y() < 0.2) return Lookup("WHITE_CHOCOLATE");
if ((p.x() > -0.9 && p.x() < -0.7) ||

(p.x() > -0.5 && p.x() < -0.3) ||
(p.x() > -0.1 && p.x() < 0.1) ||
(p.x() > 0.3 && p.x() < 0.5) ||
(p.x() > 0.7 && p.x() < 0.9))

return Lookup("CHOCOLATE");
return Lookup("WHITE_CHOCOLATE"); }

Within a script, the user can define arbitrary C++ functions with
default values for optional parameters. These functions are com-
piled and linked at runtime to interface with the core system. The
Lookup function gives access to script file variable assignments.
Function calls consist of the function name and a list of name =
value pairs within curly braces. The arguments may appear out
of order, or be left unspecified if optional.

303

2.3 Volume Specification

Many objects we would like to model are more complicated than
simply layers of material constructed from a primary interface. Of-
ten these objects can be easily described as a collection of overlap-
ping shapes. In our language, we use the precedence construct to
combine volumes. In the example below, precedence is used to first
create the volume for the almond, and then define the candy shape
around the almond (Figure 2a). Subsequent shapes could be defined
to fill the remaining unoccupied space.

ALMOND_CANDY = precedence {
volume_1 = volume {

distance_field = surface_mesh {
file = almond.obj

layers = {
interior_layer {

material = NUT
thickness = fill } } }

volume_2 = volume {
distance_field = surface_mesh {
file = candy.obj }

layers = {
interior_layer {

material = CHOCOLATE
thickness = fill }

exterior_layer {
material = WHITE_CHOCOLATE
thickness = 0.10 }

exterior_layer {
material = STRIPED_CHOCOLATE
thickness = 0.05 } } } }

The use of the precedence operator is particularly interesting
when the surface meshes intersect. In Figure 2b the almond shape
is larger and rotated so that it protrudes from the original candy
surface and beyond the additional layers of material. However, the
user may instead wish the outer layers to be wrapped around the
protruding almond as shown in Figure 2c. To do this, we use a
volume as the primary shape for a new volume. First, we use prece-
dence to combine the almond shape with the interior layer of the
chocolate. Then, we extract the outermost interface of the volume
to use as the initializing surface for the second volume that adds the
exterior layers of chocolate.

ALMOND_CANDY_2 = volume {
distance_field = from_volume_surface {

volume = precedence {
volume_1 = volume {

distance_field = surface_mesh {
file = almond.obj }

layers = {
interior_layer {

material = NUT
thickness = fill } } }

volume_2 = volume {
distance_field = surface_mesh {

file = candy.obj }
layers = {

interior_layer {
material = CHOCOLATE
thickness = fill } } } } }

layers = {
exterior_layer {
material = WHITE_CHOCOLATE
thickness = 0.10 }

exterior_layer {
material = STRIPED_CHOCOLATE
thickness = 0.05 } } }

2.4 Signed Distance Field

Signed distance fields are a natural choice for describing and imple-
menting the layers and volumes in our language. A signed distance
field is a continuous scalar function defined throughout a volume,
which can be used to compute offset isosurfaces while elegantly
handling changes in topology and preventing self-intersection of
the interfaces. In most cases, we initialize the distance field from
a surface mesh using the method described in Section 4.2. Alter-
natively, we can create the field from an implicit surface or other

a) b)

c) d)

Figure 2: Specifying the interaction of two meshes allows many
other possibilities: a) simple precedence to create the candy around
an almond, b) & c) precedence with intersecting meshes, and d)
union of the candy and almond meshes.

function. The layers of a volume are implemented as ranges of dis-
tance values.

Often the desired distance field is most easily described by com-
bining distance fields using simple operators such as scaling, union
(minimum), intersection (maximum), and subtraction [Ricci 1973;
Frisken et al. 2000]. To demonstrate distance field composition, we
use the union operator to combine the candy and almond surface
meshes to produce the volume shown in Figure 2d. The zero iso-
surface of the resulting shape lies between the chocolate and white
chocolate layers.

UNION_CANDY = volume {
distance_field = union {

distance_field_1 = surface_mesh {
file = almond.obj }

distance_field_2 = surface_mesh {
file = candy.obj } }

layers = {
interior_layer {

material = CHOCOLATE
thickness = 0.2 }

interior_layer {
material = PINK_FROSTING
thickness = fill }

exterior_layer {
material = WHITE_CHOCOLATE
thickness = 0.15 } } }

Usually, a distance field is simply a Euclidean measurement from
each point to the original surface. Layers defined within this type of
distance field will have uniform thickness within each layer. How-
ever, it is often natural to describe layers that are thicker or thinner
according to some pattern. To create interesting internal structures
that have varying layer thicknesses, we can define non-Euclidean
distance metrics by modifying the interface velocity. The spacing
between isosurfaces in a distance field is greater where the velocity
is higher. The user may define a pattern of increased velocity by
painting on the surface as shown in Figure 3a. Alternatively, the
interface velocity can be defined procedurally: in Figure 3b the ve-
locity is set by a random turbulence function, resulting in a bumpy

304

appearance, and in Figure 3c a short procedure creates a diagonal
swirl. The velocity can also be computed using visibility, accessi-
bility, etc.

Interface velocity is implemented per distance field, and all lay-
ers within that field have a thickness pattern based on that velocity.
Nesting volume specifications allows us to create a model with lay-
ers having different thickness patterns. For example, in Figure 3d
we build a layer of bumpy frosting from a turbulent velocity field
followed by a layer of foil wrapper with a diagonal pattern. This
type of specification is common enough to warrant a syntactic sugar
construct, which desugars velocities specified per layer into nested
volume specifications.

LUMPY_CANDY = volume {
distance_field = surface_mesh {

file = candy.obj }
layers = {

exterior_layer {
material = PINK_FROSTING
thickness = 0.1
velocity = BUMPY }

exterior_layer {
material = FOIL_WRAPPER
thickness = 0.05
velocity = DIAGONAL } } }

is equivalent to:

LUMPY_CANDY = volume {
distance_field = from_volume_surface {

volume = volume {
distance_field = surface_mesh {

file = candy.obj
velocity = BUMPY }

layers = {
exterior_layer {

material = PINK_FROSTING
thickness = 0.1 } } }

velocity = DIAGONAL }
layers = {

exterior_layer {
material = FOIL_WRAPPER
thickness = 0.05 } } }

3 Operations

In the previous section we discussed how our language is used
to initialize a volumetric model. The advantages of these models
become apparent when visualized and modified in complex ways.
Many simulation techniques have been developed for sculpting and
weathering [Dorsey et al. 1996; Dorsey et al. 1999; O’Brien and
Hodgins 1999]. We have incorporated implementations of a few of
these techniques into our system and provide user control of these
tools through our language. The user is able to develop additional
tools based on these packages or link to other simulation libraries.

3.1 Usability through Abstraction

One of the main obstacles the user must overcome in using a sim-
ulation package is determining proper values for the numerous pa-
rameters needed to control the system. Different implementations
of the same simulation technique may require different sets of pa-
rameters. The first goal of our tool interface is to provide abstrac-
tion and standardization so the user of the tool can apply operations
to the model without studying the details of the implementation. A
simple interface between each simulation package and our system
is established and a set of sample tools is created. Each tool defines
default values for standard parameters such as position, orientation,
size, and affected materials and calls one or more simulation pack-
ages. Using the sample tools as a guide, the user can create new
tools.

We have linked our system to a flexible FEM simulation. We
apply a distribution of forces to our model and the system computes

a) b)

c) d)

e) f)

Figure 3: By modifying the interface velocity of the distance field,
we can create layers with non-uniform thickness: a) painted ve-
locity, b) turbulent velocity for a bumpy appearance c) procedurally
created diagonal stripes, and d) a diagonal layer on top of the bumpy
layer. Images e and f are cross-sections of c and d respectively.

the appropriate deformations and fractures. We can also control
which materials are affected by the simulation; no other materials
will be modified. Below we define a simple tool which applies a
single hammer-like force to the model.

void HAMMER(Model *model,
Vec3f position = Vec3f(0,0,0),
Vec3f orientation = Vec3f(1,0,0),
float magnitude = 1.0,
float size = 1.0,
List<Material*> *affects = NULL) {

Vec3f force = orientation; force *= magnitude;
AppliedArea *a = GaussSphere(position,size);
FEM(model,a,force,affects); }

Below is an example use of this tool.

HAMMER {
model = BRONZE_CAT
position = { 1.08 0.79 0.29 }
orientation = { -0.32 -0.26 -0.91 }
affects = { FIRED_CLAY } }

3.2 Defining Simulation Behavior

The power of a language for tool definition extends beyond copying
and modifying existing tools. The language facilitates the specifi-

305

cation of new types of behavior for the simulation. Particle systems
have been used in many different applications to create a variety of
effects that span a wide range of physical accuracy. The complexity
of a particle system simulation depends on the definition of particle
motion, interaction, and effects. Below we present the definition of
a tool used to wash dirt from a statue.

void WASH(Model *model,
int num_particles = 10000,
float particle_life = 1) {

Function *initialize = VerticalFall;
Function *motion = Lookup("CLINGING");
Function *action = Lookup("REMOVE_DIRT");
ParticleSystem(model,num_particles,particle_life,

initialize,motion,action); }

The particle motion and action functions defined below each take
two arguments: the particle to move, and the model with which
it interacts. Motion functions that compute interactions between
particles would also need the list of all particles as an argument.

void REMOVE_DIRT(Model *m, Particle *p) {
Vec3f clean_color = Vec3f(1,1,1);
List<Vertex*> vlist;
float radius = 0.1;
m->CollectVertices(vlist,p->pos(),radius);
for (int i = 0; i < vlist.numElements(); i++) {

Vertex *v = vlist.getElement(i);
v->BlendColor(clean_color,

p->pos(),radius); } }

void CLINGING(Model *m, Particle *p) {
Vec3f n;
m->NormalAt(p->pos(),n);
if (n.dot(Gravity) > cos(p->FallingAngle()))

p->Drip(m,Gravity);
else

p->MoveAlongMesh(m,Gravity); }

In the CLINGINGmotion function, smaller values for the falling
angle result in flow that behaves with greater surface tension.

3.3 Interactive Sculpting

Choosing the appropriate position, orientation, and radius for the
types of tools described above can be tedious for complex mod-
els. Our language can also be used as an intermediate format for an
interactive sculpting program. A simplified version of the volumet-
ric model can be sculpted interactively and the actions saved. The
logged actions can be edited by hand or simply appended to a script
file that is run offline on the high resolution model.

4 Volumetric Representation

Our scripting language was designed to provide great freedom in
model specification, independent of the underlying implementation
of the volume data structures. In our implementation we use tetra-
hedral meshes to represent volumetric models. In this section we
discuss some specifics of this implementation. Additionally, the
system could maintain and convert between other volumetric repre-
sentations that are more advantageous for certain operations.

4.1 Tetrahedral Mesh

Our volumetric representation consists of a set of tetrahedra, where
each tetrahedron stores pointers to its four vertices and the four
neighbors sharing its faces. Generally, neighbors are tetrahedra, but
those tetrahedra with a face on the visible interface have a triangle
neighbor that stores rendering information such as vertex normals
and texture coordinates. The list of visible interface triangles forms
a watertight mesh and is used for interactive display and offline ren-
dering. Each tetrahedron stores its material type and any additional
sub-tetrahedron material variations. We can also efficiently extract

the set of faces that define the interfaces between different materi-
als. These faces are necessary to accurately render refraction and
translucency for non-opaque materials.

We have chosen a tetrahedral mesh because it offers many advan-
tages in this application over other volumetric techniques, such as
voxels or octree-based volumes [Wang and Kaufman 1995; Frisken
et al. 2000]. With a tetrahedral mesh, we have a simple correla-
tion between volume and surface, and the corresponding triangle
mesh is easy to render on graphics hardware. The visible and inte-
rior interfaces can be represented at variable resolutions and model
sharp creases in the geometry accurately. The data structure is in-
herently adaptive, allowing more tetrahedra in areas of high detail.
Tetrahedral meshes are a simple extension of triangle meshes, and
their geometric properties, such as simplification and subdivision,
are well understood. Finally, many popular simulation techniques
such as FEM are designed to work on tetrahedral meshes. Axis-
aligned volumetric techniques such as voxels or octree-based dis-
tance fields are poorly suited to handle operations that deform or
fracture the model.

4.2 Evaluating the Signed Distance Field

We synthesize tetrahedral models from triangle meshes by evalu-
ating the signed distance field (discussed in Section 2.4) on a uni-
form 3D grid. The system determines a default grid based on the
bounding box of the function or surface mesh, but it can be overrid-
den by the user in the script file. We compute the distance value at
each grid point using the Fast Marching Level Set method described
by Sethian [1999], which elegantly avoids self-intersections when
computing isosurfaces.

Given surface S, a signed distance function fS is defined as fol-
lows: for any point p in R3, the magnitude of fS(p) is the distance
from p to the closest point on S, and the sign of fS(p) is negative if
p lies in the interior volume of S and positive if it lies outside. We
initialize a band of known vertices near the original surface by iter-
ating over the faces in the surface mesh and rasterizing each face
F into the volume grid. For all grid points p near F , we update
fS(p) iff |fF (p)| < |fS(p)|. To compute fF (p), the signed dis-
tance from point p to F , we find point p′ on F closest to p. Then,
|fF (p)| = ‖p− p′‖ and the sign of fF (p) is obtained as the sign of
(p′ − p) · n, where n is the surface normal at p′.

To make this scheme robust, if p′ lies on a vertex or edge of F ,
the normal n must be obtained by averaging the normals of adja-
cent faces.2 After all faces have been rasterized, the function fS is
defined in the proximity of S. We propagate the distance of each
known vertex to its neighbors, which are then marked trial. The
trial vertices are stored in a priority queue by magnitude, and start-
ing with the smallest distance, they are marked known and propa-
gated to their neighbors until the necessary layer thickness has been
defined.

4.3 Tetrahedral Mesh Generation

Once the signed distance function has been initialized, we use a
standard method for creating tetrahedral meshes — a structured
method based on an axis-aligned grid or octree [Yerry and Shep-
hard 1984; Wyvill et al. 1986; Lorensen and Cline 1987; Bloo-
menthal 1994]. The octree method is robust and simpler to imple-
ment than unstructured methods such as advancing front and De-
launay methods [Lohner 1988; Baker 1989]. Unstructured methods
produce a mesh independent of object orientation and attempt to
match the vertices and faces of the original mesh. In our applica-
tion, we handle large scanned meshes and matching the surface is

2Nooruddin and Turk [2000] present an alternative approach for obtain-
ing the signed distance field which does not require a watertight mesh.

306

usually unnecessary and even undesirable. Both structured and un-
structured mesh generation techniques are usually used in conjunc-
tion with mesh simplification and optimization, which we discuss
in Section 4.4.

First each cubic grid cell is divided into five tetrahedral cells,
alternating the orientation of the central tetrahedron so that diag-
onals match on neighboring cubic cells. We chose not to use the
six-tetrahedron decomposition because it results in more tetrahe-
dra and requires interpolation along the long diagonal of the cube,
which can lead to additional artifacts on material interfaces. We
illustrate our technique with a 2D example.

Each tetrahedral cell is then divided into tetrahedra of the appro-
priate materials, similar to Nielson et al. [1997]. If the distance val-
ues of all four vertices of a tetrahedral cell are within the range for
a single layer, one tetrahedron of that material is created. If the ver-
tices are within different layer ranges, we split the tetrahedral cell
into two cells by splitting one of its edges at an interface crossing
(neighboring tetrahedral cells sharing that edge are also split) and
recurse. A protocol for ordering edge splits based on vertex and
interface identifiers guarantees a proper mesh with matching tetra-
hedral faces. This algorithm places no constraints on the thickness
of layers or the number of interface crossings allowed per tetrahe-
dral cell.

Using precedence to combine volume descriptions (Section 2.3)
can introduce non-manifold interfaces [Bloomenthal and Ferguson
1995]. If a tetrahedral cell is not assigned material by the first
volume description in a precedence operation, we proceed to the
next volume description. When we split a tetrahedral cell, we also
split tetrahedra assigned by previous volume descriptions that share
the edge to be split. This operation prevents T-junctions at non-
manifold interface intersections and is performed efficiently using
a hash table of all tetrahedral edges.

After the volume has been tetrahedralized, tetrahedra for layers
with procedural descriptions (Section 2.2) are subdivided as neces-
sary to correctly assign materials.

4.4 Simplification of Models for Simulation

The structured mesh generation technique described in Section 4.3
produces a large number of tetrahedra and poorly shaped tetrahe-
dra [Shewchuk 1998] when an interface passes very close to the
grid points. Many simulation techniques require tetrahedra to be
well-proportioned, which is often measured by the minimum solid
angle [Fleischmann et al. 1999]. We have several methods to reduce
the overall number of tetrahedra and improve their shape.

To obtain a high resolution interface, we require a high resolu-
tion grid; however, if a material layer is thick relative to the grid,
this leads to extraneous tetrahedra within the layer. An adaptive
octree approach dramatically reduces the initial number of tetra-
hedra produced, as illustrated in Figure 4. Similarly to Frisken et

Figure 4: The mesh on the left was created from a uniform distance
field. The mesh on the right was created from the same distance
field after adaptive refinement, resulting in less than half as many
tetrahedra. The meshes have similar interface quality. Simplifica-
tion can be used to further reduce the size of the model.

al. [2000], we compute the signed distance field on a uniform grid,
then collapse grid cells that are accurately represented by interpo-
lation or do not contain an interface crossing. We restrict the grid
cell collapses such that cells sharing faces are no more than one
level different in the octree. This restriction bounds the minimum
solid angle of intermediate tetrahedral cells. Additionally, the user
can specify that certain interfaces must be represented at a higher
resolution and with more accuracy.

After the initial tetrahedralization, we use a combination of sim-
plification and mesh improvement techniques [Hoppe 1996; Staadt
and Gross 1998; Trotts et al. 1999; Cignoni et al. 2000]. We found
it difficult to define an appropriate edge collapse weighting func-
tion (used in the Progressive Mesh techniques) that simultaneously
solved our goals. Our solution is similar to the mesh improvement
strategy described by Freitag and Ollivier-Gooch [1997] and has
been efficient and effective in practice.

First, we compute a quality metric (ranging from 0 to 10) for
each tetrahedron t, which can vary depending on the exact require-
ments of the simulation we plan to run. The equations below reward
tetrahedra that are close to equilateral (minimum solid angle ∼0.55
steradians) and have volume close to the ideal volume (total model
volume / desired tetrahedral count). We use α = 0.7.

Quality(t) = α ∗ A(t) + (1 − α) ∗ V(t)

A(t) = 10 ∗ min

(

1,

√

2 ∗ min solid angle(t)

)

V(t) = 10 ∗ min

(

1,

√

volume(t)

ideal volume

)

We target the removal or improvement of low-quality tetrahedra
while maintaining the visible and interior interfaces (using, e.g.,
quadric error [Garland and Heckbert 1997] or volume preserva-
tion). Our simplification strategy is outlined in the following psue-
docode.

for q = 0 to 10

T = { all tetrahedra with Quality(t) ≤ q }

for each t in T

try these actions:
• 3 → 2, 2 → 3, and 2 → 2 tetrahedral flips
• half edge collapses
• move each vertex to the average of its neighbors

We choose not to perform an action if the interface is unacceptably
degraded, or if the minimum quality of the affected tetrahedra after
the action is lower than the minimum quality before the action. If a

307

Figure 5: Lost wax casting. Adapted from Hodges [1970].

stopping criterion (such as a desired number of tetrahedra) has not
been met, the interface requirements are reduced and the process is
repeated.

5 Results

In this section we present three illustrative examples from our sys-
tem. We describe our artistic intentions for each model based on its
environment and history.

5.1 Lost Wax Casting

The lost wax casting process is a common technique for creating
bronze statues (Figure 5). A roughly-shaped clay core is covered
with malleable wax, in which the shape and details of the final
sculpture are formed. When the wax sculpture is finished, a thick
layer of clay is spread over the wax. The model is slowly heated to
allow the wax to drip from the clay mold and then the mold is fired
in a kiln. Molten bronze is poured into the hardened clay mold.
Finally, when cool, the brittle clay is chipped away to reveal the
bronze statue.

The original cat surface has sharp edges and areas of high cur-
vature, but the outer clay layer does not contain such detail. In
the physical process, the artist applies a thicker layer of clay to the
concave portions of the model. To model this process, we use the
convex hull of the original surface as a second mesh.

BRONZE_CAT = precedence {
volume_1 = volume {

distance_field = surface_mesh {
file = cat.obj }

layers = {
interior_layer {

material = BRONZE
thickness = 1 }

interior_layer {
material = FIRED_CLAY
thickness = fill } } }

volume_2 = volume {
distance_field = surface_mesh {
file = cat_hull.obj }

layers = {
interior_layer {

material = FIRED_CLAY
thickness = fill }

exterior_layer {
material = FIRED_CLAY
thickness = 2.5 } } } }

Figure 6: A sequence of images from our bronze statue simulation.
The outer layer of fired clay is broken away using a hammer tool.
A polish tool is used to clean and shine the model.

308

We used the hammer tool to break away the outer layer of clay,
by specifying that only fired clay tetrahedra are affected. The tool
is used repeatedly on different portions of the model. We also de-
signed a polish tool to clean and shine the statue. This tool performs
a CSG subtraction operation to remove clay left on or around the
model. Subtraction is implemented in our system by subdivision
and tetrahedron removal. The polish tool also increases the shini-
ness of nearby tetrahedra, by blending with the SHINY BRONZE
material.

void POLISH(Model *model,
Vec3f position = Vec3f(0,0,0),
float size = 1) {

AppliedArea *a = Sphere(position, size);
List<Material*> affects(Lookup("FIRED_CLAY"));
CSG_Subtract(model,a,affects);
List<Tetra*> lst;
model->CollectTetras(lst,position,size);
for (int i = 0; i < lst.numElements(); i++) {

Tetra *t = lst.getElement(i);
t->BlendMaterial(Lookup("SHINY_BRONZE"),

position,size); } }

We interactively sculpted a model of approximately 100,000
tetrahedra, and replayed the operations on a model with 300,000
tetrahedra [Müller et al. 2001]. A sequence from this simulation is
shown in Figure 6.

5.2 Displaced Brick Paving

In our next example, we model a tree in an urban setting surrounded
by brick paving. As the tree grows, the roots push upward, shifting
the bricks. Here is the script we used to produce the initial model.

URBAN_TREE = precedence {
volume_1 = volume {

distance_field = union {
distance_field_1 = TRUNK
distance_field_2 = 2D_EXTRUDE {

file = roots.ppm } }
layers = {
interior_layer {

material = TREE
thickness = fill } } }

volume_2 = volume {
distance_field = GROUND_PLANE
layers = {
interior_layer {

material = BRICK_PAVING
thickness = 0.075 }

interior_layer {
material = DIRT
thickness = 1.00 } } } }

We created an abstract tree model using our language: the trunk
is represented with an implicit function for a cylinder plus turbu-
lence, and the roots are procedurally created from a simple 2D
sketch.

The brick paving is created with a procedural definition similar to
the striped chocolate definition in Section 2.2. The simplified model
has approximately 200,000 tetrahedra.

To displace the brick paving around the tree, we created a tool to
translate upward the vertices of all tree tetrahedra. The FEM system
is used to solve for the static equilibrium positions of the remaining
vertices. The results are shown in Figure 7. The bricks maintain
their rectilinear shape because the brick material has a large value

Figure 7: We simulate tree growth by translating all tree vertices
upward and deforming the dirt and bricks around the roots.

for the elasticity parameter; the dirt between and beneath the bricks
deforms easily because of its relatively smaller value. Appropriate
values for these materials can be obtained from standard references
[Anderson 1989].

5.3 Weathered Statue

In Figure 8, we show the layering of weathering effects on a gar-
goyle statue mounted on the exterior of a building. Gargoyles are
subjected to interesting flow patterns because they were originally
used as decorative downspouts to direct rainwater away from build-
ing foundations. Long term exposure causes a variety of effects
on exterior architectural details including discoloration, weakening,
erosion, biological growth, and fracture due to the freeze/thaw cy-
cle. The model shown here was created from a scanned mesh as
one layer of stone.

We use several tools built on our particle system that use differ-
ent procedures for particle motion and action. First, we apply an
even layer of dirt to the model and use the wash tool to remove
dirt according to rain flow. The FEM hammer tool is used to break
off the ear and a corner of the wing. Next, an erosion tool moves
particles toward exposed areas of the mesh where a small sphere
of material is removed. Finally, we apply a biological growth tool
similar to the wash tool, but with minimal particle motion, resulting
in lichen-colored discoloration on the top-facing surfaces. Below is
the script used to modify the model, which after simplification con-
tained approximately 500,000 tetrahedra.

309

DIRT {
model = GARGOYLE
color = { 0.5 0.5 0.5 } }

WASH {
model = GARGOYLE
num_particles = 200000
particle_life = 1.0 }

HAMMER {
model = GARGOYLE
position = { -0.78 1.22 0.77 }
orientation = { -0.23 -0.47 0.85 } }

HAMMER {
model = GARGOYLE
position = { -2.53 1.03 1.06 }
orientation = { 0.56 -0.19 -0.80 } }

ERODE {
model = GARGOYLE
num_particles = 2000 }

LICHEN {
model = GARGOYLE
num_particles = 40000 }

6 Discussion and Future Work

We have presented a procedural framework for specifying layered
solid models and applying a series of simulation operations to them.
Our approach allows complex volumetric models to be constructed
from existing triangle meshes as well as from implicit functions
and distance fields. These different modeling approaches are han-
dled seamlessly within our high-level framework. These models
can then be easily modified using procedural simulation tools.

Ours is one of the first modeling systems where simulation is
treated as a sculpting tool rather than merely for animation, and we
think this approach has tremendous potential. In general, it pro-
vides both a higher level of abstraction for, and a convenient inter-
face to, existing simulation environments. Our scripting language
is also valuable as an intermediate file representation for capturing
the history of interactive sculpting operations.

Our system has been used to successfully construct models for
a wide range of rendering, simulation, and animation applications.
We have built small models, with a few hundred tetrahedra, for use
in real-time animation research [Müller et al. 2001], as well as large
models with millions of tetrahedra for off-line weathering and ero-
sion simulations. In fact, models at either resolution can be con-
structed from essentially the same script.

In the future, we plan to expand our language to incorporate new
modeling and simulation tools. We would like to alternate between
the various phases of modeling and simulation more readily. We
would also like to add better procedural support for volume gener-
ation, perhaps incorporating support for materials, such as cement-
based products, which have intricate internal structures.

Overall, we believe that a procedural interface between model-
ing and simulation is an important tool for our community. With our
prototype framework, we have experienced a dramatic increase in
modeling productivity and flexibility, smoothed transitions of mod-
els between simulation and rendering applications, and provided
access to complex simulation systems to novice users.

7 Acknowledgments

We would like to thank Hugues Hoppe for helpful discussions,
Justin Legakis for the use of his rendering software, and Stephen
Duck for the architectural model in the gargoyle renderings. This
work was supported by NSF grants CCR-9988535, CCR-0072690,
and EIA-9802220 and by a gift from Pixar Animation Studios.

Figure 8: A sequence of renderings from the gargoyle simulation:
the initial model made of fresh white stone; a layer of dirt is applied
and partially washed away by rain; fracture removes the gargoyle’s
ear and wing, erosion affects top surfaces; biological growth.

310

A Modeling Language

Type grammar

script : (assignment | operation)*
assignment : identifier = value

operation : function { assignment* }

value : integer | float | string | material | layer | distance field
| volume | function | { value* }

distance field : function: Vec3f ⇒ float
substance : material | function: Vec3f ⇒ material | nothing
thickness : float | fill

velocity : float | function: Vec3f ⇒ float

Selected built-in functions

material material (string name, float density = 1.0, etc.);
layer interior layer (substance material,

thickness thickness = 1.0);
layer exterior layer (substance material,

thickness thickness = 1.0);
distance field surface mesh (string file,

velocity velocity = 1.0);
distance field union (distance field distance field 1,

distance field distance field 2,
velocity velocity = 1.0);

distance field from volume surface (volume volume,
velocity velocity = 1.0);

volume load (string file);
volume volume (distance field distance field, layers layers);
volume precedence (volume volume 1, volume volume 2);

References
ADZHIEV, V., CARTWRIGHT, R., FAUSETT, E., OSSIPOV, A., PASKO, A., AND

SAVCHENKO, V. 1999. HyperFun Project: A framework for collaborative multi-
dimensional F-rep modeling. In Proceedings of Implicit Surfaces ’99, 59–69.

ANDERSON, H. L., Ed. 1989. A Physicist’s Desk Reference, 2nd ed. American
Institute of Physics, New York.

BAKER, T. J. 1989. Automatic mesh generation for complex three-dimensional re-
gions using a constrained delaunay triangulation. Engineering with Computers, 5,
161–175.

BLOOMENTHAL, J., AND FERGUSON, K. 1995. Polygonization of non-manifold
implicit surfaces. In Proceedings of ACM SIGGRAPH 95, Computer Graphics
Proceedings, Annual Conference Series, 309–316.

BLOOMENTHAL, J. 1994. An implicit surface polygonizer. In Graphics Gems IV.
Academic Press, Boston, 324–349.

CIGNONI, P., COSTANZA, D., MONTANI, C., ROCCHINI, C., AND SCOPIGNO, R.
2000. Simplification of tetrahedral meshes with accurate error evaluation. In IEEE
Visualization 2000, 85–92.

COOK, R. L. 1984. Shade trees. In Computer Graphics (Proceedings of ACM SIG-
GRAPH 84), 18(3), 223–231.

COQUILLART, S. 1990. Extended free-form deformation: A sculpturing tool for
3d geometric modeling. In Computer Graphics (Proceedings of SIGGRAPH 90),
24(4), 187–196.

DORSEY, J., PEDERSEN, H. K., AND HANRAHAN, P. M. 1996. Flow and changes in
appearance. In Proceedings of ACM SIGGRAPH 96, Computer Graphics Proceed-
ings, Annual Conference Series, 411–420.

DORSEY, J., EDELMAN, A., LEGAKIS, J., JENSEN, H. W., AND PEDERSEN, H. K.
1999. Modeling and rendering of weathered stone. In Proceedings of ACM SIG-
GRAPH 99, Computer Graphics Proceedings, Annual Conference Series, 225–234.

EBERT, D. S., MUSGRAVE, F. K., PEACHEY, D., PERLIN, K., AND WORLEY, S.
1998. Texturing & Modeling, 2nd ed. Academic Press.

FLEISCHMANN, P., KOSIK, R., HAINDL, B., AND SLBERHERR, S. 1999. Simple
examples to illustrate specific finite element mesh requirements. In Proceedings of
the 8th International Meshing Roundtable, 241–246.

FREITAG, L. A., AND OLLIVIER-GOOCH, C. 1997. Tetrahedral mesh improvement
using swapping and smoothing. International Journal for Numerical Methods in
Engineering, vol. 40, 3979–4002.

FRISKEN, S. F., PERRY, R. N., ROCKWOOD, A. P., AND JONES, T. R. 2000.
Adaptively sampled distance fields: A general representation of shape for com-
puter graphics. In Proceedings of ACM SIGGRAPH 2000, Computer Graphics
Proceedings, Annual Conference Series, 249–254.

GARLAND, M., AND HECKBERT, P. S. 1997. Surface simplification using quadric
error metrics. In Proceedings of ACM SIGGRAPH 97, Computer Graphics Pro-
ceedings, Annual Conference Series, 209–216.

HANRAHAN, P., AND LAWSON, J. 1990. A language for shading and lighting cal-
culations. In Computer Graphics (Proceedings of ACM SIGGRAPH 90), 24(4),
289–298.

HOPPE, H. 1996. Progressive meshes. In Proceedings of ACM SIGGRAPH 96,
Computer Graphics Proceedings, Annual Conference Series, 99–108.

LEGAKIS, J., DORSEY, J., AND GORTLER, S. J. 2001. Feature-based cellular textur-
ing for architectural models. In Proceedings of ACM SIGGRAPH 2001, Computer
Graphics Proceedings, Annual Conference Series, 309–316.

LOHNER, R. 1988. Generation of three-dimensional unstructured grids by the advanc-
ing front method. In International Journal for Numerical Methods in Fluids, vol. 8,
1135–1149.

LORENSEN, W. E., AND CLINE, H. E. 1987. Marching cubes: A high resolution
3d surface construction algorithm. In Computer Graphics (Proceedings of ACM
SIGGRAPH 87), 21(4), 163–169.

MIZUNO, S., OKADA, M., AND ICHIRO TORIWAKI, J. 1998. Virtual sculpting and
virtual woodcut printing. The Visual Computer, 14(2), 39–51.

MÜLLER, M., DORSEY, J., MCMILLAN, L., AND JAGNOW, R. 2001. Real-time
simulation of deformation and fracture of stiff materials. In Proceedings of Euro-
graphics Workshop on Animation and Simulation 2001, 113–124.

NIELSON, G. M., AND SUNG, J. 1997. Interval volume tetrahedrization. In IEEE
Visualization ’97, 221–228.

NOORUDDIN, F. S., AND TURK, G. 2000. Interior/exterior classification of polygonal
models. In IEEE Visualization 2000, 415–422.

O’BRIEN, J. F., AND HODGINS, J. K. 1999. Graphical modeling and animation
of brittle fracture. In Proceedings of ACM SIGGRAPH 99, Computer Graphics
Proceedings, Annual Conference Series, 137–146.

PARISH, Y. I. H., AND MÜLLER, P. 2001. Procedural modeling of cities. In Proceed-
ings of ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Confer-
ence Series, 301–308.

PAYNE, B. A., AND TOGA, A. W. 1992. Distance field manipulation of surface
models. IEEE Computer Graphics & Applications, 12(1), 65–71.

PERLIN, K., AND HOFFERT, E. M. 1989. Hypertexture. In Computer Graphics
(Proceedings of ACM SIGGRAPH 89), 23(3), 253–262.

PERLIN, K. 1985. An image synthesizer. In Computer Graphics (Proceedings of ACM
SIGGRAPH 85), 19(3), 287–296.

PRUSINKIEWICZ, P., LINDENMAYER, A., AND HANAN, J. 1988. Developmental
models of herbaceous plants for computer imagery purposes. In Computer Graph-
ics (Proceedings of ACM SIGGRAPH 88), 22(4), 141–150.

RAVIV, A., AND ELBER, G. 2000. Three-dimensional freeform sculpting via zero
sets of scalar trivariate functions. Computer-Aided Design, 32(8-9), 513–526.

RICCI, A. 1973. A constructive geometry for computer graphics. The Computer
Journal, 16(2), 157–160.

SETHIAN, J. A. 1999. Level Set Methods and Fast Marching Methods, 2nd ed. Cam-
bridge University Press, Cambridge, United Kingdom.

SHEWCHUK, J. R. 1998. Tetrahedral mesh generation by delaunay refinement. In
Proceedings of the 14th Annual Symposium on Computational Geometry, 86–95.

STAADT, O. G., AND GROSS, M. H. 1998. Progressive tetrahedralizations. In IEEE
Visualization ’98, 397–402.

TROTTS, I. J., HAMANN, B., AND JOY, K. I. 1999. Simplification of tetrahedral
meshes with error bounds. IEEE Transactions on Visualization and Computer
Graphics, 5(3), 224–237.

UPSTILL, S. 1990. The Renderman Companion : A Programmer’s Guide to Realistic
Computer Graphics. Addison-Wesley.

WANG, S. W., AND KAUFMAN, A. E. 1995. Volume sculpting. In Symposium on
Interactive 3D Graphics, ACM Press, 151–156.

WYVILL, B., MCPHEETERS, C., AND WYVILL, G. 1986. Data structure for soft
objects. The Visual Computer, 2(4), 227–234.

WYVILL, B., GUY, A., AND GALIN, E. 1999. Extending the CSG tree. Warping,
blending and boolean operations in an implicit surface modeling system. Computer
Graphics Forum, 18(2), 149–158.

YERRY, M. A., AND SHEPHARD, M. S. 1984. Automatic three-dimensional mesh
generation by the modified octree technique. International Journal For Numerical
Methods in Engineering, 20, 1965–1990.

311

